Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Nucleation and subsequent growth of new aerosol particles in the atmosphere is a major source of cloud condensation nuclei and persistent large uncertainty in climate models. Newly formed particles need to grow rapidly to avoid scavenging by pre-existing aerosols and become relevant for the climate and air quality. In the continental atmosphere, condensation of oxygenated organic molecules is often the dominant mechanism for rapid growth. However, the huge variety of different organics present in the continental boundary layer makes it challenging to predict nanoparticle growth rates from gas-phase measurements. Moreover, recent studies have shown that growth rates of nanoparticles derived from particle size distribution measurements show surprisingly little dependency on potentially condensable vapors observed in the gas phase. Here, we show that the observed nanoparticle growth rates in the sub-10 nm size range can be predicted in the boreal forest only for springtime conditions, even with state-of-the-art mass spectrometers and particle sizing instruments. We find that, especially under warmer conditions, observed growth is slower than predicted from gas-phase condensation. We show that only a combination of simple particle-phase reaction schemes, phase separation due to non-ideal solution behavior, or particle-phase diffusion limitations can explain the observed lower growth rates. Our analysis provides first insights as to why atmospheric nanoparticle growth rates above 10 nm h−1are rarely observed. Ultimately, a reduction of experimental uncertainties and improved sub-10 nm particle hygroscopicity and chemical composition measurements are needed to further investigate the occurrence of such a growth rate-limiting process.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Insights into the effect of temperature (T) and relative humidity (RH) as well as structure and polarisation on ion mobility help the comparison and interpretation of mobility and mass-based data. We measured alkylammonium ions in air under different T (14 °C, 24 °C, 34 °C and 41 °C) and RH (0 %, 20 %, 40 %) conditions using two individual setups (in both cases a planar differential mobility analyser coupled with a time-of-flight mass spectrometer) and the results are in excellent agreement. Mobility increases with rising T and decreases with water vapour loading. When separating the measurement mobility by structures, clear mass dependence was observed. The measured mobilities exhibited large deviations from theoretically calculated results in dry conditions, which are possibly caused by adduct formation on the monomer ions via clustering (or reactions). This phenomenon seems to be unavoidably associated with light ions under atmospheric pressures, which is worth further exploration and bearing in mind when comparing measurements to calculations. Both methanol and oxygen (occasionally nitrogen or alkyl chain elongation) are possible candidates of the adduct. Under spherical assumption, we used the modified Mason–Schamp's approximation to link the measured mobility to the mobility equivalent diameter. The drag enhancement factor and the effective gas-molecule collision diameter derived from our measurement data are comparable to literature values. Our data also exposed a non-linear dependence on the polarisation parameter . Polarisation, and were parameterised using linear models against ion structures, T, and RH for primary, secondary and tertiary alkylammonium ions with identical alkyl groups. Our model parametrisations predict mobilities within ±10 % deviation from the measured data. The model also has satisfying predicting power for alkylammonium ions with unidentical alkyl structures.more » « less
- 
            Anthropogenic ammonia (NH3) emissions have significantly increased in recent decades due to enhanced agricultural activities, contributing to global air pollution. While the effects of NH3on surface air quality are well documented, its influence on particle dynamics in the upper troposphere-lower stratosphere (UTLS) and related aerosol impacts remain unquantified. NH3reaches the UTLS through convective transport and can enhance new particle formation (NPF). This modeling study evaluates the global impact of anthropogenic NH3on UTLS particle formation and quantifies its effects on aerosol loading and cloud condensation nuclei (CCN) abundance. We use the EMAC Earth system model, incorporating multicomponent NPF parameterizations from the CERN CLOUD experiment. Our simulations reveal that convective transport increases NH3-driven NPF in the UTLS by one to three orders of magnitude compared to a baseline scenario without anthropogenic NH3, causing a doubling of aerosol numbers over high-emission regions. These aerosol changes induce a 2.5-fold increase in upper tropospheric CCN concentrations. Anthropogenic NH3emissions increase the relative contribution of water-soluble inorganic ions to the UTLS aerosol optical depth (AOD) by 20% and increase total column AOD by up to 80%. In simulations without anthropogenic NH3, UTLS aerosol composition is dominated by sulfate and organic species, with a marked reduction in ammonium nitrate and aerosol water content. This results in a decline of aerosol mass concentration by up to 50%. These findings underscore the profound global influence of anthropogenic NH3emissions on UTLS particle formation, AOD, and CCN production, with important implications for cloud formation and climate.more » « lessFree, publicly-accessible full text available November 4, 2026
- 
            Abstract Haze in Beijing is linked to atmospherically formed secondary organic aerosol, which has been shown to be particularly harmful to human health. However, the sources and formation pathways of these secondary aerosols remain largely unknown, hindering effective pollution mitigation. Here we have quantified the sources of organic aerosol via direct near-molecular observations in central Beijing. In winter, organic aerosol pollution arises mainly from fresh solid-fuel emissions and secondary organic aerosols originating from both solid-fuel combustion and aqueous processes, probably involving multiphase chemistry with aromatic compounds. The most severe haze is linked to secondary organic aerosols originating from solid-fuel combustion, transported from the Beijing–Tianjing–Hebei Plain and rural mountainous areas west of Beijing. In summer, the increased fraction of secondary organic aerosol is dominated by aromatic emissions from the Xi’an–Shanghai–Beijing region, while the contribution of biogenic emissions remains relatively small. Overall, we identify the main sources of secondary organic aerosol affecting Beijing, which clearly extend beyond the local emissions in Beijing. Our results suggest that targeting key organic precursor emission sectors regionally may be needed to effectively mitigate organic aerosol pollution.more » « less
- 
            Abstract Isoprene (C5H8) is the non-methane hydrocarbon with the highest emissions to the atmosphere. It is mainly produced by vegetation, especially broad-leaved trees, and efficiently transported to the upper troposphere in deep convective clouds, where it is mixed with lightning NOx. Isoprene oxidation products drive rapid formation and growth of new particles in the tropical upper troposphere. However, isoprene oxidation pathways at low temperatures are not well understood. Here, in experiments at the CERN CLOUD chamber at 223 K and 243 K, we find that isoprene oxygenated organic molecules (IP-OOM) all involve two successive$${{{\rm{OH}}}}^{\bullet}$$ oxidations. However, depending on the ambient concentrations of the termination radicals ($${{{{\rm{HO}}}}_{2}}^{\bullet},\,{{{\rm{NO}}}}^{\bullet}$$ , and$${{{\rm{NO}}}}_{2}^{\bullet}$$ ), vastly-different IP-OOM emerge, comprising compounds with zero, one or two nitrogen atoms. Our findings indicate high IP-OOM production rates for the tropical upper troposphere, mainly resulting in nitrate IP-OOM but with an increasing non-nitrate fraction around midday, in close agreement with aircraft observations.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Abstract During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Exposure to anthropogenic atmospheric aerosol is a major health issue, causing several million deaths per year worldwide. The oxidation of aromatic hydrocarbons from traffic and wood combustion is an important anthropogenic source of low-volatility species in secondary organic aerosol, especially in heavily polluted environments. It is not yet established whether the formation of anthropogenic secondary organic aerosol involves mainly rapid autoxidation, slower sequential oxidation steps or a combination of the two. Here we reproduced a typical urban haze in the ‘Cosmics Leaving Outdoor Droplets’ chamber at the European Organization for Nuclear Research and observed the dynamics of aromatic oxidation products during secondary organic aerosol growth on a molecular level to determine mechanisms underlying their production and removal. We demonstrate that sequential oxidation is required for substantial secondary organic aerosol formation. Second-generation oxidation decreases the products’ saturation vapour pressure by several orders of magnitude and increases the aromatic secondary organic aerosol yields from a few percent to a few tens of percent at typical atmospheric concentrations. Through regional modelling, we show that more than 70% of the exposure to anthropogenic organic aerosol in Europe arises from second-generation oxidation.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Abstract As one of the least understood aerosol processes, nucleation can be a dominant source of atmospheric aerosols. Sulfuric acid (SA)-amine binary nucleation with dimethylamine (DMA) has been recognized as a governing mechanism in the polluted continental boundary layer. Here we demonstrate the importance of trimethylamine (TMA) for nucleation in the complex atmosphere and propose a molecular-level SA-DMA-TMA ternary nucleation mechanism as an improvement upon the conventional binary mechanism. Using the proposed mechanism, we could connect the gaseous amines to the SA-amine cluster signals measured in the atmosphere of urban Beijing. Results show that TMA can accelerate the SA-DMA-based new particle formation in Beijing by 50–100%. Considering the global abundance of TMA and DMA, our findings imply comparable importance of TMA and DMA to nucleation in the polluted continental boundary layer, with probably higher contributions from TMA in polluted rural environments and future urban environments with controlled DMA emissions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
